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1 Introduction to Brownian Motion

1.1 Definition of Brownian motion

Here is a heuristic definition of Brownian motion, describing its properties.

Definition 1.1. Brownian motion is a “random” function B(t) for t ≥ 0, t ∈ R such
that

1. B(0) = 0

2. (Independence on disjoint intervals) B(t2)−B(t1) is independent of B(t4)−B(t3) if
[t3, t4] ∩ [t2, t1] = ∅ for any t1, t2, t3, t4 ∈ R with ti ≥ 0.

3. For all t > 0, B(t) ∼ N(0, t).

4. B(t) is continuous a.s.

We can ask many questions about Brownian motion. For example, we can ask what is
sup0≤t≤1 |B(t)|?

1.2 Comparison with the Poisson process

This is similar to a Poisson Process. Recall the Poisson Process:

Definition 1.2. A Poisson process is a “random” function N(t) for t ≥ 0, t ∈ R such
that

1. N(0) = 0

2. N(t4) − N(t3) is independent of N(t2) − N(t1) if [t3, t4] ∩ [t2, t1] = ∅ for any
t1, t2, t3, t4 ∈ R with ti ≥ 0.

3. N(t) ∼ Pois(t).

How do we know such a thing actually exists? We need to have a probability space
(Ω,F ,P)? What are the sample space and measurable sets we want to talk about? To talk
about a Poisson process, we only need to know when the times of the jumps are. So we
can take Ω to be the set of step functions and F = σ(N(t) : t ≥ 0).

We can define Ω,F for Brownian motion similarly. But how do we define P? The
Heuristic definition only defines P on some special events! Next time, we will make this
rigorous. Later, we will define it in yet another, better way and show that the methods
are equivalent.
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2 Independence Properties and Construction of Brownian
Motion

2.1 Independence of sections of Brownian motion

Denote independence by ⊥. We know that (B(t2)− B(t1)) ⊥ (B(s2)− B(s2)) if [s1, s2] ∩
[t1, t2] = ∅. However, this does not directly imply that the random variables B(x) for
x ∈ [t1, t2] and B(y) for y ∈ [s1, s2] are independent. To prove this, we recall a consequence
of the π-λ lemma.

Lemma 2.1. Suppose Ti = σ(Ai), where Ai is a π-system for i = 1, 2. If A1 ⊥ A2 for all
A1 ∈ A1 and A2 ∈ A2, then T1 ⊥ T2.

Proposition 2.1. Let t1 < t2 < s1 < s2, and let f(a) = B(t1 +a)−B(t1) for a ∈ [0, t2−t1]
and g(b) = B(s1+b)−B(s1) for b ∈ [0, s2−s1]. These two random functions are independent
of each other.

Remark 2.1. This is stronger than the fixed coordinates being independent because we
can say things like maxa f(a) ⊥ maxb g(b).

An important consequence of this is that for any t0, Brownian motion from 0 to t0 is
independent of what happens after t0.

Proposition 2.2. Let a > 0. Then B(at) ∼
√
aN(0, t).

2.2 Difficulty in construction of Brownian motion

How can we construct Brownian motion? Recall that constructing X ∼ U [0, 1] is difficult;
we have to talk about σ-fields and Lebesgue measure. A main difficulty is that not all sets
are measurable. So we need to find a decent collection of measurable sets of functions for
Brownian motion.

If we want to construct random vectors (X,Y ), then we have to have F = σ(FX×FY ).
If we have a random sequence (X1, X2, . . . ), we have the σ-field σ(

⋃
Fi), but we need to

use the Kolmogorov extension theorem1 to construct P.
With the Poisson process, we only needed to look at jumping times to understand the

whole process. So we only need a sequence (T1, T2, T3, . . . ). So we do not run into the same
problem there we have with Brownian motion.

One idea (which does not work): Define B(t), t ∈ Q using the Kolmogorov extension
theorem and extend the values continuously. But it is difficult to show that lims∈Q→s0 B(s)
exists. So the correct idea is that we only get B(t) for t ∈ Z[1

2 ] first, where Z[1
2 ] = {m/2−n :

m,n ∈ Z} is the set of dyadic rational numbers.
Step 1: Using the Kolmogorov extension theorem, we can create a random list C(x)

for x ∈ Q2 such that

1Kolmogorov created the foundations for probability theory at the young age of 33.
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• C(0) = 0,

• separate intervals are independent,

• C(y)− C(x) ∼ N(0, y − x) for x, y ∈ Z[1
2 ].

Theorem 2.1. C(x) is uniformly continuous.

We will prove this next time. Using this, the next step is as follows.
Step 2: Let ψ : UCF (Z[1

2 ]) → C[0, 1] send C(x) to its unique continuous extension.
Then let PBM = PCM ◦ ψ−1.

2.3 Gaussian random vectors

Before we construct Brownian motion, we need to understand a notion related to Gaussian
random variables.

Definition 2.1. A Gaussian random vector is a random vector X = (X1, . . . , Xn) such
that for all y ∈ Rn, X · y is a Gaussian random variable.

The reason we care about this is that (B(1), B(2), B(3), . . . ) is a Gaussian random
vector (i.e. its finite dimensional projections are Gaussian random vectors).

Proposition 2.3. Let X be a Gaussian random vector with E[X] = 0. If E[XiXj ] = 0,
then Xi ⊥ Xj.

This does not hold for general random vectors and will be important for us in our
construction of Brownian motion.
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3 Uniform Continuity of Brownian Motion

3.1 Brownian Motion is Uniformly Continuous on Z[1
2
]

Recall that we wanted to define Brownian motion by defining it on Z[1
2 ], the dyadic rational

numbers. We have B(x) − B(y) ∼ N(0, y − x) if y, x ∈ Z[1
2 ] and B(0) = 0. Since

(B(t1), . . . , B(tn)) is a Gaussian vector, to show that (B(2) − B(1)) ⊥ (B(3) − B(2)), for
example, we need only show that these are uncorrelated.

Lemma 3.1. B on Z[1
2 ] is uniformly continuous.

Here is the idea. Look at the interval [0, 1], and say [a, b] ⊆ [0, 1] is an interval of length
ε. We know that |B(b)−B(a)| ∼ N(0, ε) ∼

√
ε.

We need to prove that

lim
ε↓0

sup
|t−s|≤ε

t,s∈Z[ 1
2

]∩[0,1]

|B(t)−B(s)| = 0.

The “bad event” where this does not happen is the union of small/basic bad events
{|B(t) − B(s)| ≥ δ}, but we can show that the probability of the big bad event is
�
∑

P(small bad event).

Proof. For each m and γ > 0, define Gγm = {6 ∃k s.t.|B(k/2m)− B((k − 1)/2m)| ≥ 2−γm}.
Let HN =

⋂∞
m≥N G

γ
m.

Now let’s bound |B(y)−B(x)|. Find an interval I1 = [a, b] ⊆ [x, y] of length 2−N . If we
are in HN , then |B(b)−B(a)| ≤ 2−γN . Now let I2 = [a−1/2N+1, a] and I3 = [b, b+1/2N+1]
if these are contained in [x, y] and let them be ∅ otherwise. Then if we are in HN ,
|B(a)−B(a− 1/2N+1)| ≤ 2−γ(N+1) and similarly for I3. Proceeding like this, we can split
the interval [x, y] into intervals Ik of length 2−n for n ≥ N with at most 2 of each kind. So
[x, y] =

⋃∞
n=1 In, and we get

|B(y)−B(x)| ≤ 2

∞∑
m≥N

2mγ .

So in HN , if |x− y| ≤ 2−(N−1), then |B(y)−B(x)| ≤ C2−Nγ for some constant C > 0.
To get uniform continuity, we don’t want to have fixed HN . Using Markov’s inequality

with the fact that E[X]4] = 1/2m when X ∼ N(0, 1/2m),

1− P(Gγm) = 2mP(|B(1/2m)−B(0)| ≥ 2−γm) ≤ 2−2m

2−4γm
≤ 2(−1+4γ)m.

So 1 − P(HN ) is bounded by a convergent geometric series. We will finish the proof next
time.
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4 Holder Continuity and Non-Lipschitz Continuity of Brow-
nian Motion

4.1 Brownian Motion is Hölder Continuous on Z[1
2
]

Let’s finish our proof of the following.

Lemma 4.1. B on Z[1
2 ] is uniformly continuous a.s.

Last time, we had a sequence of events HN on which we had a condition bounding
|B(x)−B(y)|.

Proof. In HN , if x, y ∈ Z[1
2 ], and |x − y| ≤ 2−N , then |B(x) − B(y)| ≤ C2−γN . We also

know that P(HN ) ≈ 1 − C2−γN . Since HN =
⋂∞
m≥N Gm, HN ⊆ HN+1. In HN , for all

k ≥ N , if |x− y| ∈ Z[1
2 ] and |x− y| ≤ 2−k, then |B(x)−B(y)| ≤ 2−γK . So in HN , B(t) is

a uniformly continuous function.
Now, since HN ⊆ HN+1, we get P(

⋃∞
N=1H

N ) = limN→∞ P(HN ) = 1. So with proba-
bility 1, B(t) is uniformly continuous on Z[1

2 ].

The proof actually shows the following:

Corollary 4.1. For any γ < 1
2 , B(t) on Z[1

2 ] is a γ-Hölder continuous function a.s.

Proof. In HN , if |x − y| ≤ 2−N , then |B(x) − B(y)| ≤ |x − y|γC. So in HN for any
x, y ∈ [0, 1] with x, y ∈ Z[1

2 ], |B(x) − B(y)| ≤ |x − y|γCN . So in
⋃
Hn, B(t) is γ-Hölder

continuous.
How did we find γ? We had E[B(t)4] ∼ t2, so we chose γ < 1/4. We can do better by

using the 2p-th moment: E[B(t)2p] ∼ tp, so we can pick γ < (p− 1)/(2p).

Now that we have a uniformly continuous B(t) on Z[1
2 ], we can extend it continuously

to the entire positive real line.

4.2 Brownian motion is a.s. not Lipschitz anywhere

Lemma 4.2. B(t) is not Lipschitz at any point with probability 1.

Here is the idea: Split [0, 1] into n intervals of length 1/n. When the distance between
two points is 1/n, then B(x)−B(y) should be about 1/

√
n

Proof. Fix a constant C. Let An := {∃x ∈ [0, 1]s.t. if |y − x| ≤ 3/n, then |B(y)−B(x)
y−x | ≤ C}.

We want to show that P(
⋂
nAn) = 0, and we have that An+1 ⊆ An. So we want to prove

that limn P(An) = 0. Define A
(x)
n to be the event {|y − x| ≤ 3/n, |B(y)−B(x)

y−x | ≤ C} In A
(x)
n ,

|B(x+1/n)−B(x)| ≤ C/n; call this event A
(x)
n,1. Similarly, |B(x+2/n)−B(x+1/n)| ≤ 3C/n;
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call this event A
(x)
n,2. Going to the left of x, we also get |B(x − 1/n) − B(x)| ≤ C/n; call

this event A
(x)
n,3. So we have A

(x)
n ⊆

⋂3
i=1A

(x)
n,i . Since the A

(x)
n,i are independent,

P(An) ≤
3∏
i=1

P(A
(x)
n,i )

We have that P(A
(x)
n,i ) ∼ 1/

√
n, so P(A

(x)
n ) ≤ (1/n)3/2.

Let’s extend this to all of An, not just a specific point. Let ak,n = k/n. Then

P

(
n⋃
k=1

A
(an,k)
n

)
≤ nP(A

(an,k)
n ) ∼ 1√

n
.

The set of points where x is Lipschitz is open, so if B(t) is Lipschitz at x, then it is Lipschitz
at an,k for some n, k. So we can bound the probability of An; the details are left as an
exercise.2

4.3 σ-fields for Brownian motion

Which σ-field do we use for Brownian motion? We have a few choices we can use:

F0
s = σ(B(t), t ≤ s)

F+
s =

⋂
t>s

F0
t

The second of these choices contains the first, and it contains events that allow you to “see
into the future” a little bit. But we will see that the only extra events F+

s contains are
null sets. Here is an example of an event in F+

s but not in F0
s :

A =

{
lim sup
t→s+

B(t)−B(s)

t− s
≥ 1

2

}
.

2:(
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5 Brownian Motion Filtrations and Markov Property

5.1 Two filtrations for Brownian motion

Last time, we introduced the σ-fields

F+
s :=

⋂
t>s

F0
t , F0

s := σ(B(s′), s′ ≤ s).

We have that F0
s ⊆ F+

s , and these are not the same because we have an event in F+
s \ F0

s :{
lim sup
t→s+

B(t)−B(s)

t− s
≥ 1

2

}
.

Later, we will show that the sets in F+
s \ F0

s differ from sets in F0
s by null sets. In

applications, we can use both of these σ-fields interchangeably. Usually, we use F+
s because

F+
s = limt→s+ F+

t = limt→s+ F0
t . That is, we want a right continuous filtration.

How do we show that F+
s is almost the same as F0

s ? For any bounded random variable
Z on Ω, we can define the conditional expectations

E[Z | F+
s ], E[Z | F0

s ].

We will show that these are equal a.s. for any such Z.
Here is an application of this result (which is very difficult to prove without it).

Example 5.1. Fix s. What is

As = P(inf{t > s : B(t) > B(s)} = s}?

This should be the same as

A0 = P(inf{t > 0 : B(t) > 0} = 0).

Naively, you may assume that the answer should be 1/2; but in fact, it is 1.

Proposition 5.1. P(inf{t > 0 : B(t) > 0} = 0) = 1.

Proof. Let B0 be the event infB(t)>0{t : t > 0} = 0, so A0 = P(B0). Then B0 is F+
0 -

measurable. Then
E[1B0 | F0

0 ] = E[1B0 | F+
0 ] = 1B0 .

But F0
0 = {∅,Ω}, since B(0) = 0. So E[1B0 | F0

0 ] = E[1B0 ]. This gives us

1B0 = E[1B0 ].

So P(B0) = 1 or 0.
To show that P(B0) 6= 0, let C0 be the event inf{t > 0 : B(t) < 0}. Then P(C0) =

P(B0), and P(B0 ∪ C0) = 1. So P(B0) > 0.
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5.2 Markov property of Brownian motion

Now let’s prove this crucial result about F+
s and F0

s . Here is some notation.
Let Y : CB(R) → [−M,M ] for some M > 0. Then define Ex[Y ] := Y (B(·) + x) for

x ∈ R; this says that we input a Brownian motion with B(0) = x. Similarly, we define
Ex[Y | F ] := E[Y (B(·) + x) | F ].

Recall the shift operator θs : C(R)→ C(R) given by θs(f)(x) = f(x+ s).

Lemma 5.1 (Markov property of Brownian motion). With the same notation as above,

Ex[Y ◦ θs | F+
s ] = EB(s)[Y ].

Remark 5.1. The right hand side is the expectation of Y (B̃(·)), where B̃ is a Brownian
motion independent of B such that B̃(0) = B(s). So the right hand side is F0

s -measurable,
while the left hand side is F+

s -measurable. The difficulty of proving this statement comes
from this aspect.

Remark 5.2. Recall the similarity to the Markov property for Markov chains. There is a
strong version of this property akin to the strong Markov property.
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6 Markov Property of Brownian Motion

6.1 Proof of the Markov property of Brownian motion

We want to prove the following.

Lemma 6.1 (Markov property of Brownian motion). Let Y : C(R) → [−M,M ] be a
functional, and let θs be the shift by s. Then

Ex[Y ◦ θs | F+
s ] = EB(s)[Y ].

Recall the following lemma:

Theorem 6.1 (Monotone class argument). Let A be a π-system, and let H be a collection
of functions that satisfies:

1. If A ∈ A, then 1A ∈ H.

2. If f, g ∈ H, then f + g ∈ H.

3. If fn ↑ f with 0 ≤ fn ∈ H, then f ∈ H.

Then H has all bounded measurable functions with respect to σ(A).

Now on to the proof of the Markov property.

Proof. We need to show that for any A ∈ F+
s and for any Y , E[1A(Y ◦θs)] = E[1A EB(s)[Y ]].

By the monotone class argument, we only need to prove this for Y s of the form Y =∏n
k=1 fk(B(tk)); here, A is the algebra generated by the B(t)s. Then

Y ◦ θs(B(·)) =
n∏
k=1

fk(B(tk + s)).

The point of this trick now is that the difference between F0
s and F+

s doesn’t matter
because there is a gap between s and s+ t1.

For this Y , let’s prove that that the result holds for any A ∈ F0
S+δ with δ ≤ t1/2. So

we want to show that
E[Y ◦ θs | F0

s+δ] = ϕYB(s+δ)

for some ϕ. We only need to show that this holds for A ∈ Aδ, where Aδ = {
⋂n
k=1{B(ak) ∈

Rk} : ak ∈ [0, s+ δ], Rk is Borel}, because σ(Aδ) = F0
s+δ. So we can calculate

E[1A(Y ◦ θs)] = E

[
n∏
k=1

1{B(ak)∈Rk} ·
n∏
k=1

fk(B(tk + s))]

]
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=

∫
R1

pa1(0, â1) dâ1

∫
R2

pa2−a1(â1, â2) dâ2 · · ·
∫
Rn

pan−an−1(ân−1, ân) dân

·
∫
R
ps+δ−an(ân, ξ) dξ

∫
R
pt−δ(ξ, t̂1)f1(t̂1) dt1 ·

∫
R
pt2−t1(t̂1, t̂2)f2(t̂2) dt̂2

· · ·
∫
R
ptm−tm−1(t̂m−1, t̂m)fm(t̂m)dt̂m,

where pt(x, y) is the pdf of a N(0, t) random variable, pt(x, y) = 1√
2πt
e−|y−x|

2/2t. These

integrals should be nested (evaluate them in reverse order).

= E[1Aϕ
Y
s+δ],

where ϕYs+δ ∈ F0
s+δ. In particular, this depends only on B(s+ δ). If we send δ ↓ 0, this ϕ

has a limit. This limit is exactly ϕY (Bs) = EB(s)[Y ].

6.2 Events at 0 and ∞ are trivial

Corollary 6.1. F+
0 is trivial.

Proof. F+
0 agrees with F0

0 mod null sets, but F0
0 is trivial.

Corollary 6.2. Events depending on B(t) as t→∞ are trivial.

Proof. Define Y (t) = tB(1/t). Then Y (t) is a Brownian motion because they are both
have finite dimensional distributions which are Gaussian vectors that agree. But events
with t→∞ are the same as events for B(s) with s ↓ 0. These are trivial.

14



7 Equality of σ-Fields and Brownian Inversion

7.1 F0
s and F+

s are almost the same

Last time, we showed the Markov property for Brownian motion:

Ex[Y ◦ θs | F+
s ] = EB(s)[Y ].

This is actually a bit stronger than a Markov property, since it uses F+
s , not F0

s .

Proposition 7.1. F+
s = F0

s modulo null sets.

Proof. We claim that Ex[Y ◦θs | F0
s ] = EB(s)[Y ]. The right hand side is F0

s -measurable, and
the Markov property shows that it satisfies the definition of the conditional expectation.
Then for any F-measurable Z,

E[Z | F+
s ] = E[Z | F0

s ].

This follows from the monotone class argument, which tells us we only need to show it for
Z =

∏k
i=1 f(B(ti)). We can assume that t1 < t2 < · · · < rm ≤ s and tm+1 > · · · > tk > s.

Then Z = X · (Y ◦ θs), where X =
∏m
i=1 f(B(ti)) and Y =

∏k−m
j=1 f(B(tj − s)). Then X is

F0
s -measurable, so

E[Z | F0
s ] = E[X(Y ◦ θs) | F0

s ]

= X E[Y ◦ θs | F0
s ]

= X E[Y ◦ θs | F+
s ]

= E[X(Y ◦ θs) | F+
s ]

= E[Z | F+
s ].

7.2 tB(1/t) is a Brownian motion

Last time, we mentioned the following property.

Proposition 7.2. Let Y (t) = tB(1/t). Then Y (t) is a Brownian motion.

Proof. (Y (t1), . . . , Y (tn)) is a Gaussian random vector. So to prove that Y (t2) − Y (t1) ⊥
Y(t4) − Y (t3), for example, we only need to prove that they are uncorrelated. It now
remains to show that we can define Y (0) = 0.

We need to know that limt→∞
B(t)
t = 0 a.s.

Proposition 7.3. limn→∞
B(n)
n = 0. a.s.

Proof. B(n) =
∑n

i=1Xi, where Xi = B(n) − B(n − 1). The Xi are iid with N(0, 1)
distribution, so the strong law of large numbers gives the result.
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What if we want to find the following probability:

P
(

max
m∈[n,n+1]

|B(m)−B(n)|
n2/3

≥ 1

)
.

We can try looking at the following:

P

 max
m∈n+Q(k)

[0,1]

|B(m)−B(n)|
n2/3

≥ 1

 ,

where Q(k)
[0,1] = {`/k ∈ [0, 1] : k, ` ∈ Z}

You could try a union bound:

≤
k∑
`=1

P
(∣∣∣∣B(n+ `/k)−B(n)

n2/3

∣∣∣∣ ≥ 1

)
.

However, this probability does not decay with k, and we have to add together k of them.
So this will not work.

Let X` = B(n + `/k) − B(n + (` − 1)/k), and let Y` =
∑

`′<`X`′ . The X`s are iid, so
Y` is a Markov chain and a Martingale. We have the general inequality:

P
(

max
1≤`≤k

|Y`| ≥ a
)
≤

E[Y 2
k ]

a2

This gives us

P
(

max
1≤`≤k

|Y`| ≥ n2/3

)
≤ 1

n4/3
.

Let k = 2k̃, and define the event Ak̃ = {maxm∈n+Qk |B(m) − B(n)| ≤ n2/3}. Then
Ak̃ ⊇ Ak̃+1. We also have that

P(Ak̃+1) ≥ 1− n−4/3.

So

P

⋃
k̃

Ak̃

 ≥ 1− n−4/3.

This gives us

P
(

max
m∈n+[0,1]

∣∣∣∣B(m)−B(n)

n2/3

∣∣∣∣ ≥ 1

)
≤ n−4/3.

If we call this event Cn, we get that

P(Cn i.o.) = 0

by the first Borel-Cantelli lemma.
Together with the fact that limn

B(n)
n → 0, we get:
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Proposition 7.4. With probability 1,

lim
t→∞

B(t)

t
→ 0.

Corollary 7.1. The tail σ-field of Brownian motion is trivial.

Proof. This follows from the fact that F0
0 ≡ F

+
0 , while F0

0 is trivial.
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8 Tail Events, Limsups, and Stopping Times for Brownian
Motion

8.1 Tail events do not depend on starting point

If A ∈ T , we know that Px(A) = 0 or 1. On the other hand, this may depend on x (i.e. it
is a function g of x). We want to show that for Brownian motion, g(x) = g(0) for all x.

Example 8.1. Consider the event

A =

{
lim sup
n is prime

B(n)√
n
≤ 1

2

}
.

Since A is in the tail σ-field T , 1A = 1D ◦ θ1 for a shifted event D. Then

P0(A) = E[1A]

= E[E[1A | F1]]

= E[E[1A ◦ θ1 | F1]]

= E[EB(1)[1D]︸ ︷︷ ︸
:=ϕ(B(1))

]

=

∫
ϕ(a)p1(0, a) da.

We know that 0 ≤ ϕ(B(1)) ≤ 1. Since p1(0, a) is positive and we know that P0(A) = 0 or
1, we must have ϕ(a) = P0(A) for a.e. a.

The same argument starting at x gives

Px(A) =

∫
ϕ(a)p1(x, a) da = P0(A)

∫
p1(x, a) da = P0(A).

8.2 Limsup of Brownian motion

Let’s try to show that

lim sup
t

Bt√
t

=∞ a.s.

By symmetry, this will also mean that

lim inf
t

Bt√
t

= −∞ a.s.

Let

f(k) = P
(
Bn√
n
≥ k

)
︸ ︷︷ ︸

:=An,k

> 0.
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This is independent of n because Bn/
√
n ∼ B(1) for all n. We then have

P(An,k i.o.) ≥ lim supP(An,k) = f(k)

So

P
(

lim sup
t

Bt√
t
≥ k

)
≥ f(k) > 0.

Since this is a tail event, it must then have probability 1.

8.3 Stopping times for Brownian motion

Define the σ-field Fs to be the smallest σ-field containing F+
s and all the null sets. Let’s

now discuss the issue of stopping times. How should we define this?
We have

{S < t} =
⋃
n

{
S ≤ t− 1

n

}
∈ F0

t ,

{S ≤ t} =
⋂
n

{
S < t+

1

n

}
∈ F+

t .

Since these only disagree on null sets, we are okay taking either definition.

Definition 8.1. A stopping time is a random variable T : Ω → R+ ∪ {∞} such that
{T < t} ∈ Ft for all t ∈ R+.

If S(n) are stopping times for all n ∈ Z and S(n) ↘ S a.s., then S is a stopping time.
What does a.s. convergence mean in this context?

P({ω : lim
n→∞

S(n)(ω) = S(ω)}) = 1.

Proof. We can split up an event as

{S < t} =
⋃
n

{Sn < t}︸ ︷︷ ︸
Ft

.

Remark 8.1. We have a similar result when S(n) ↗ S.

Proposition 8.1. Let G be an open or closed set in R. Then S = inf{t : Bt ∈ G} is a
stopping time.

Proof. If G is open,

{S < t} =
⋃
t′<t
t′∈Q

{Bt′ ∈ G}︸ ︷︷ ︸
∈Ft

.

Since this is a countable union, {S < t} ∈ Ft.
If G is closed, we define Un =

⋃
x∈GB(x, 1/n). Then we can define a stopping time Sn

based on Un, and Sn ↗ S. So S is a stopping time.
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9 Strong Markov Property of Brownian Motion

9.1 σ-fields for stopping times

Recall, we said that a stopping time must satisfy {S < t} ∈ Ft for any t. We can define
Sn = min{ k2n : k

2n ≥ S ≥ k−1
2n }. Then Sn is also a stopping time, and Sn ↘ S. Working

with Sn is like working with stopping times in the discrete case. This is an example of a
general technique: prove results for the discrete case and take a limit to transfer the result
to the continuous case.

In the case of discrete time Markov chains, we define FT = {A : A∩{T ≤ n} ∈ Fn ∀n}.
Such events A can be expressed as A =

⋃
nAn, where An = A ∩ {T = n} ∈ Fn for each n.

The idea is that FT is the information up to the stopping time T .
In the continuous case, we can define FS = {A : A ∩ {S ≤ t} ∈ Ft ∀t}.

9.2 The strong Markov property of Brownian motion

Theorem 9.1 (strong Markov property of BM). Let {Ya}a∈R be a collection of functionals
C(R)→ R, and let S be a stopping time. Then

E0[YS ◦ θS | FS ] = EB(S)[YS ].

Remark 9.1. If we let S = t be constant and set Ya = Y , we get the Markov property we
had before.

Example 9.1. Let S := inf({1}∪{t : Bt ≥ 1}). Let’s find E[B1−BS | FS ]. We can define
YS(f) = f(1− S). Then YS ◦ θS(f) = f(1). So

E[B(1) | FS ] = E[YS ◦ θS | FS ] = EB(S)[YS ] = EB(S)[B̃(1− S)],

where B̃ is an independent Brownian motion. If {S < 1}, then this is E1[B̃(1 − S)] = 1.
The case for {S > 1} will be discussed later.

Here is the idea of the proof:

Proof. We will prove that this is true for each Sn ↘ S. We need to show that for any
A ∈ FS .

E[1A E0[YS ◦ θS | FS ]] = E[1A EB(S)[B̃(1− S)]].

Then we only need to show that this is true for the π-system of events {S < t} and
{Bu ≤ x}. Then we simplify which Y s we want to prove this for using the monotone class
argument.

Remark 9.2. One subtlety to pay attention to is that FS is not the same as F+
S ; this is

because S is random, so the situation is more complicated.
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Example 9.2. We saw before that inf{t > 0 : Bt = 0} = 0 a.s. If B(0) = 1, we will
eventually hit 0 (at time S = inf{t : Bt = 0}, say). Then we can ask the question of
whether inf{t > s : Bt = 0} = 0. The strong Markov property will let us answer this
question. What should Y be?
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10 Zeros of Brownian Motion, Time to Exceed a Value, and
The Reflection Principle

10.1 Zeros of Brownian motion

Let Tt0 = inf{t > t0 : B(t) = 0} be the first time to hit 0 after time t0. Based on this, we
can define Rt0 = inf{t > Tt0 : B(t) = 0}, the next time to hit 0 after T0.

Proposition 10.1. For any t0, with probability 1, Rt0 = Tt0.

Proof. We want to look at Ft0 := 1Rt0 6=Tt0 .

E[Ft0 ] = E[E[F0 ◦ θTt0 | FTt0 ]]

= E[E[F0 | F0]]

= E[F0]

= 0.

Define the event Aq = {Rq = Tq}, where q ∈ Q. Then P(Aq) = 1, so P(
⋂
q∈QAq) = 1.

This means that if B(t) = 0 for some t, then there exist either sn ↗ t or sn ↘ t such that
B(sn) = 0 (with n ∈ Z).

Corollary 10.1. With probability 1, Brownian motion has no isolated zeros.

10.2 First time to exceed a value

Let x > 0, and let Tx = min{t > 0 : B(t) ≥ x} be the first time we exceed a. We can think
of Tx as a function of x; this function is monotonically increasing. Tx has the property
that its values are independent in separate intervals:

Proposition 10.2. Let a1 ≤ a2 ≤ b1 ≤ b2. Then (Ta2 − Ta1) ⊥ (Tb2 − Tb1).

Proof. If E[F (A) | B] is constant for all functions F , then A ⊥ B. So want to show that

E[F (Tb2 − Tb1) | Ta2 − Ta1 ]]

is constant for any function F . This will follow if we can prove that

E[F (Tb2 − Tb1) | FTb1 ]

is constant. We have, by the Strong Markov property, that

E[F (Tb2 − Tb1) | FTb2 ] = E0[F (Tb2−b1)].
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What is the distribution of Ta for some fixed a > 0? This is difficult to prove on its
own. The correct idea is to study Tx for varying x to find out things about Ta.

Define the characteristic function ϕa(λ) = E[e−λTa ]. Then ϕa(λ)ϕb(λ) = ϕa+b(λ)

for all λ, as Ta +Tb
d
= Ta+b. The unique solution to this kind of equation is ϕa(λ) = e−ahλ .

How do we find hλ? Here is a trick: Define Yt = eθBt−θ
2t; then Yt is a Martingale, and

E[Yt∧T ] = E[T0∧T ] = E[Y0] = 1 for any stopping time T . Then E[eθBTa−θ
2Ta ] = 1, so we

can find hλ.

10.3 Reflection principle for Brownian motion

We can also ask the following question: What is

P

(
sup
t∈[0,1]

Bt ≥ a

)
?

Surprisingly, we get

P

(
sup
t∈[0,1]

Bt ≥ a

)
= 2P(B1 ≥ a).

This is called the reflection principle for Brownian motion.3 The idea is that if we hit
a, we can reflect the rest of a path above and below the line y = a. These paths have the
same probability of occurring. So we get

P(B1 ≥ a) = P

(
B1 ≥ a | sup

t∈[0,1]
Bt ≥ a

)
P

(
sup
t∈[0,1]

Bt ≥ a

)

=
1

2
P

(
sup
t∈[0,1]

Bt ≥ a

)
.

3Professor Yin has found this principle very useful in his research.
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11 Distribution of The Last Zero in [0, 1] and Martingale
Properties of Brownian Motion

11.1 First time to exceed a value

Proposition 11.1. Let Ta = inf{t > 0 : Bt ≥ a}. Then

P(Ta < 1) = 2P(B1 > a).

Proof. Last time, we said

P(B1 > a) = P(B1 > a | Ta < 1) · P(Ta < 1).

So we want to show that P(B1 > a | Ta < 1) = 1
2 . We have

E[1{B1>BTa} | Fa] = E[1{B1−Ta>B0} ◦ θTa | Fa]
= EBTa [1{B1−Ta>B0}]

= Ea[1{B1−Ta>a}].

This is 1/2 if Ta < 1.

Corollary 11.1. Let Φ denote the CDF of the standard Gaussian distribution. Then

P(Ta < 1) = 2(1− Φ(a)).

11.2 Distribution of the last zero in [0, 1]

We’ve shown that inf{t > 0 : Bt = 0} = 0 a.s. What is the distribution of the last zero in
[0, 1]? Let A = sup{0 ≤ t ≤ 1 : Bt = 0}. Then

P(A ≤ t) =

∫
pt(0, y) · P(no zeros between t and 1 | B(t) = y) dy.

By shifting the Brownian motion by t, the probability in the integrand is

P0(T−y > 1− t) = 2(1− Φ(y)).

After solving the integral, we get

P(A ≤ t) =
2

π
arcsin(t).

Another related question: Let a = supt∈[0,1]B(t), and let B(Ts) = a. What is the
distribution of Ts?
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11.3 Martingale properties of Brownian motion

Definition 11.1. A random function (Xt)t≥0 is a martingale (with respect to the filtra-
tion Ft) if for all t > s, E[Xt | Fs] = Xs.

Equivalently, the condition is E[Xt −Xs | Fs] = 0.

Proposition 11.2. Xt = B2
t − t is a martingale.

Proof. First, Xt − Xs = B2
t − B2

s − (t − s). Then Bt = Bs + Y , where Y ⊥ Bs and
Y ∼ N(0, t− s). So

E[Xt −Xs | Fs] = E[Y 2 + 2Y − (t− s) | Fs] = E[Y 2] + 2E[Y ]− (t− s) = 0.

Proposition 11.3. Let T = inf{t > 0 : B(t) ∈ {a, b}}. Then E[T ] = −ab.

Proof. Since Xt = B2
t − t is a martingale,

E[B2
T ]− E[T ] = E[XT ] = E[X0] = 0.

To find E[B2
T ], we have E[B2

T ] = P(BT = a)a2 + P(BT = b)b2. Since Bt is a martingle,
E[BT ] = 0. So we can calculate

P(BT = a) = − b
a

(1− P(BT = a)) =⇒ P(BT = a) =
b

b− a
.

So we get

E[T ] = − a2b

b− a
+

b2a

b− a
= −ab.

What if we want to find E[T 2]? We can use another martingale with a B4
t term. Next

time, we will talk about how to figure out such martingales involving Brownian motion.
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12 Polynomial Brownian Motion Martingales and Arcsine
Laws

12.1 Polynomial Brownian motion martingales

What kind of function of Brownian motion is a martingale? We want E[f(t, Bt) | Fs] =
f(s,Bs) for all t > s. We can also state this as E[f(t, B(t))− f(s,B(s)) | Fs].

Proposition 12.1. If f is a polynomial, and

∂f

∂t
+

1

2
fxx = 0,

then f(t, Bt) is a martingale.

Remark 12.1. This is not the heat equation, but it is similar. The heat equation looks like
∂f
∂t −

1
2fxx = 0. If we let pt(x, y) = fBt|{B0=x}(y), then pt(0, x) satisfies the heat equation.

Remark 12.2. For high-dimensional Brownian motion, the formula should be

∂f

∂t
+

1

2
∆f = 0.

How do we think of pt(x, y). Certainly,
∫
pt(0, y) dy = 1. Here is how physicists think

about it. If we have 1 pound of sand at t = 0, we can move the sand around randomly
according to Brownian motion. Then at time t = t0, pt0(0, x) is the density of sand at
x. The fact that pt(x, y) satisfies the heat equation explains why the variance of pt(0, y)
spreads out as t grows (the probability spreads out like heat).

If f is a martingale, we get E[f(t, Bt)−f(0, B0)] = 0. What does this mean in physics?
This is like ∫

sand
f(t, Bt) = f(0, B0).

Let fn = f(t,position of sand particle n). Then

lim
N→∞

1

N

N∑
n=1

fn(t) = f(0) = f(0, B0).

What fs satisfy this condition? If f is constant or linear with respect to position, this
condition holds. If you want a 2nd derivative condition, then you need ∂f

dt + ∆f = 0.

Proof. We have E[f(t, Bt)− f(0, B0)] = 0. This is∫
f(t, y)pt(x, y) dy − f(0, x) = 0.
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If we take the derivative with respect to t, we get∫
f1(t, y)pt(x, y) dt+

∫
f(t, y)

∂pt
∂t

(x, y) = 0.

By integration by parts, we get ∫
(f1 +

1

2
f2,2)pt(x, y) = 0.

So f1 + 1
2f2,2 = 0.

Remark 12.3. It is not necessary for f to be a polynomial. f = eθBt−
1
2
θ2t is also a

martingale.

12.2 Arcsine laws and time of the maximum in Brownian motion

Let T be the first time such that BT = supt∈[0,1]Bt. Last time, we learned that the last
zero of Brownian motion in [0, 1] is distributed like arcsine. There are two other Brownian
motion arcsine laws:

1. |{t : B(t) > 0, t ∈ [0, 1]}|,

2. T as defined above.

The way to calculate T is to first find the joint density of (T,M), whereM = supt∈[0,1]Bt.

Let M(t) = sups∈[0,t]Bs, and let Xt = B(t)−M(t) ≤ 0. We can also consider Yt = −|B̃(t)|,
which is a different Brownian motion. We claim that Xt

d
= Yt. Here is a heuristic argument

1. First, we have |{t : B(t) = M(t))}| = 0.

2. Next, if B(t0) 6= M(t0), then there are an interval I and t0 ∈ I such that B(t)−M(t)
looks like a Brownian motion in I.

3. Now T for B(t) is the last zero for B̃(t). This is because the last zero of B̃(t) and the
last zero of Yt have the same distribution. And Yt and Xt have the same distribution.

The idea to prove this is to use a random walk. If we take a limit of scaled random
walks, we will eventually get Brownian motion. We will go over this next time, in a result
called Donsker’s theorem.

If Sn is the result of a simple random walk on Z at time n, then let Xn = Sn −Mn. If
Xn−1 6= 0, then Xn = Xn−1 ± 1 with probability 1/2 each. If Xn−1 = 0,

Xn =

{
−1 with probability 1/2,

0 with probability 1/2.

Then Yn = −|S̃n| has the same distribution as Xn. This result will extend to Brownian
motion.
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13 Skorokhod’s Representation Theorem

13.1 Skorokhod’s representation theorem

We will study two new ways of understanding Brownian motion:

1. Brownian motion as a limit of simple random walks

2. Orthogonal polynomial method ot construct Brownian motion

The first one lets us prove results about Brownian motion using combinatorial ar-
guments. The OPM is useful for computer simulation of Brownian motion and other
applications.

Theorem 13.1 (Skorokhod’s representation theorem). Let X be a real-valued random
variable with E[X] = 0. There exists a family of stopping times Tα with respect to B(t)

(where α is a random label) such that B(Tα)
d
= X and E[Tα] = E[X2].

Example 13.1. Let X = ±1 with probability 1/2 each. Let T = inf{t : |B(t)| ≥ 1}. Then
B(T ) ∼ X and E[T ] = E[X2].

Example 13.2. Let X = ±2 with probability 1/2 each. Then we can take T = inf{t :
|B(t)| ≥ 2}.

Example 13.3. Let X = ±1,±2 with probability 1/4 each. Let Tk = inf{t : |B(t)| ≥ k}.
Let α = 1 or 2 with probability 1/2 each. Then B(Tα)

d
= X.

Here is the outline of the proof.

Proof. Step 1: If P(X = a or b) = 1, then let Ta,b = inf{t : B(t) = a or b}.
Step 2: We want a random variable α : Ω→ R2 with a distribution such that B(Tα)

d
=

X and E[Tα] = E[X2]. In the discrete case, we have

P(B(Tα) = u) = Eα[PBM(B(Tu,v) = u)] = Eα
[

v

|u− v|

]
.

13.2 Proof of CLT using Skorohod’s representation theorem

If we have the SLLN and this representation theorem, we can actually produce a proof of
the central limit theorem.
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Corollary 13.1 (CLT). Suppose that Xn are iid random variables with E[Xi] = 0. Then∑N
n=1Xn(∑N

n=1X
2
n

)1/2

d−→ N (0, 1).

Proof. By Skorokhod’s representation theorem, X1
d
= B(Tα) and X2

d
= B̃(Tα̃), where

α, α̃ are iid and B ⊥ B̃. Then X1 + X2
d
= B(Tα + T̃α̃), where T̃α̃ = inf{t − Tα : t >

Tα, B(t)−B(Tα) ∈ α̃}. (Recall Tα = inf{t > 0 : B(t) ∈ α}.) The reason we can do this is

that B(Tα + T̃α̃)−B(Tα)
d
= B(Tα̃). In fact, Tα, T̃α̃ are iid.

We can extend this to X1 +X2 + · · ·+Xn
d
= B(T 1

α1
+ T 2

α2
+ · · ·+ Tnαn). By the SLLN,∑

n T
n
αn → N E[T 1

α1
] = N E[X2]. So we have X1 +Xn

d
= B(YN ), where Yn → N E[X2

1 ] a.s.
So

X1 + · · ·+XN√
N

d−→ N (0,E[X2]).

13.3 Brownian motion as a limit of simple random walks

Let Xi ∼ iid Ber(1/2), and let

SNX =

{∑m
k=1Xk if X = m,x ∈ N

linear combination of Sn[x], S
n
[x]+1 x /∈ N.

In other words, we linearly interpolate between the values of a random walk. This gives us
a graph (i.e. a random continuous function R+ → R). Then let

fN (t) =
SNtN√
N
.

Then fN converges in distribution to Brownian motion on [0, 1].
Usually convergence in distribution is not so strong. Next time, we will talk about how

to improve this for our Brownian motion.
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14 Donsker’s Theorem

14.1 Donsker’s theorem

Let Snm be a simple random walk (1 ≤ m ≤ n). f (n)(t) is defined with Snm by linearly
interpolating between the values and rescaling. Then f (n) : [0, 1]→ R is a random function.

Theorem 14.1 (Donsker). f (n) d−→ B(·).

Remark 14.1. That is, we can consider Pf (n) , which is a measure on C([0, 1]). This
converges weakly to PB(·) as a measure on C([0, 1]). When we talk about weak convergence
of measures, we mean µn(A)→ µ(A) for all open, measurable A. Say Brownain motion is
associated to the space (Ω,F ,P). Then the limiting measure here is P|F(C([0,1])).

This only talks about convergence of the distributions as measures on C([0, 1]). We
can see that |{x0 : d

dxf
(n)(x0) exists}| = 1, but |{x : B′(x) exists}| = 0. The issue is that

{ω : [g′(t0)](ω) exists} is not an open set in C([0, 1]).

14.2 Applications of Donsker’s theorem

Corollary 14.1. If ψ : C([0, 1]) → R is continuous P0-a.s. (which is the P for Brownian

motion), then ψ(fn)
d−→ ψ(B).

Corollary 14.2. Let M(f) = maxt f(t). Then M(fn)
d−→M(B).

Proof. M is continuous on C([0, 1]).

Corollary 14.3. Let P0(f) = |{x : f(x) > 0}|. Then P0(fn)
d−→ P0(B).

Remark 14.2. P0 is not continuous in C([0, 1]).

Proof. The set of points where P0 is continuous has probability 1 for PBM. Indeed, if
|{x : g(x) = 0}| = 0, then P0 is continuous at g.

Similarly, we can use Donsker’s theorem to find the last zero of Brownian motion in
[0, 1].

14.3 Proof of Donsker’s theorem

Here is the proof of Donsker’s theorem. The idea is to “grow a simple random walk on
Brownian motion.”

Proof. Let Snm =
∑m

k=1Xk. We know that fn(t)
d
≈ B(t) for t = k/n, but this is hard to

deal with. The correct idea is to look at n−1/2Snm = n−1/2
∑m

k=1Xk = B(τn1 + · · · + τnm),
where τi+1 = inf{t − τi > 0 : |B̃(t) − B̃(τi)| ≥ 1}. Depending on whether the Brownian
motion goes up or down, we can tell the random walk to go up or down.
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Here is the idea of how the convergence works: Now all f (n) grow on the same B. So
the f (n) share good properties of B. If Aε,δ = {B : |x − y| ≤ δ =⇒ |B(x) − B(y)| ≤ ε}.
In Aε,δ, for all large enough n, fn is ε, δ-continuous.
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15 Orthogonal Polynomial Method for Constructing Brow-
nian Motion

15.1 Overview

This lecture, we will talk about a method used to construct Brownian motion which is good
for computers to simulate. Previously, we constructed Brownian motion on dyadic rational
numbers and extended it continuously to R. We also constructed Brownian motion as a
limit in distribution of scaled simple random walks using Donsker’s theorem.

Here are the basic properties of Brownian motion:

1. B(0) = 0.

2. B(t) ∼ N(0, t).

3. B(I1) ⊥ B(I2) if I1 ∩ I2 = ∅, where B(I) = B(b)−B(a) if I = [a, b].

4. B(·) ∈ C([0, 1]).

We will construct a sequence of random functions f (n) that converges to Brownian motion
in the ‖ · ‖∞ sense. The limiting random function will satisfy the above 4 properties.

15.2 Orthogonal functions

Given functions ψn, we have the inner product

〈ψn, ψm〉 :=

∫ 1

0
ψn(x)ψm(x) dx.

We will construct an orthonormal set of functions ψn (i.e. 〈ψn, ψm〉 = 0, 〈ψn, ψn〉 = 1).4

Let ψn be an orthonormal basis of L2([0, 1]). Then if ψ ∈ L2, we have

φ =
∑
k

〈φ, ψk〉ψk.

Now define

Wn(t) =
n∑
k=1

Xk ·
∫ t

0
ψk(s) ds, Xk ∼ iid N (0, 1).

Proposition 15.1. For every t ∈ [0, 1], Wn(t) is Gaussian with E[Wn(t)] = 0 and variance
E[W 2

n(t)]
n→∞−−−→ t.

4Orthogonal polynomials are very useful in random matrix theory.
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Proof. For the variance,

E[Wn(t)2] =

n∑
k=1

∣∣∣∣∫ t

0
ψk(s) ds

∣∣∣∣2
=

n∑
k=1

∣∣〈1[0,t], ψk
〉∣∣

n→∞−−−→
〈
1[0,t],1[0,t]

〉
= t.

Furthermore, Wn(t) −Wn(s)
d−→ N (0, t − s), and (Wn(I1),Wn(I2))

d−→ (B(I1), B(I2)),
where B is a Brownian motion.

15.3 Haar functions

We want to say that Wn(·) d−→ B(·). But the limit of the left hand side will be an L2

funciton, not necessarily a continuous function. Can we find some orthonormal basis of
polynomials such that Wn(·) has a ‖ · ‖∞ limit in C([0, 1])? Recall the following result:

Proposition 15.2. Let fn ∈ C([0, 1]) for each n. If fn → f uniformly, then f ∈ C([0, 1]).

Now we only need to find an orthonormal basis such that Wn(·) are a Cauchy sequence
in C([0, 1]).

Definition 15.1. The Haar functions are the functions

fnk (x) =

{
2n/2 x ∈ [2−nk, 2−nk + 2−(n+1)]

−2n/2 x ∈ (2−nk + 2−(n+1), 2−n(k + 1)].

Now define ψ2n+k = fnk , and let W̃n = W2n . Then

‖W̃n+1 − W̃n‖ ≤ 2−n/2 max{|X2n|, . . . , |X2n+1 |}.

We have that P(Xi > n) ∼ e−n2/2, so

P(max{x1, . . . , X2n}) . e−n
2/4

for large n. So
‖W̃n+1 − W̃‖∞ ≤ 2−n+1n

with probability 1 − e−n2/4. Using the Borel-Cantelli lemma, we get that the probability
these events don’t hold infinitely often equals 0.

This method is good for calculating things such as the distribution of the last zero of
Brownian motion in [0, 1].
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16 Itô’s Formula

16.1 Integrating with respect to Brownian motion

Let f ∈ C2([0, 1]). We want to say something like

f(Bt) = f(0) +

∫ t

0
f ′(Bs) dBs.

Itô’s formula tells us that there is actually an extra term:

f(Bt) = f(0) +

∫ t

0
f ′(Bs) dBt +

1

2

∫ t

0
f ′′(Bs) ds.

If we change a f(Bt) a little bit, how can we measure this change? The answer is

df(Bt) = f ′(Bt) dBt +
1

2
f ′′(Bt) dt.

Some people also write
∆f(Bt) = (d→ ∆)

for this in physics and finanical contexts.
There is something that is not clear in the above equation. What does the integral∫ t

0 f
′(Bs) dBs mean?

Definition 16.1. We can define an integral with respect to Brownian motion by∫ s

0
g(Bt) dBt := lim

0=t1<···<tn=s

n∑
k=1

g(B(tk))(B(tk+1)−B(tk))

This is very similar to a Riemann sum, except a Riemann sum has g(t∗k), where t∗k ∈
[tk, tk+1]. In our definition, we explicitly pick tk, instead. In fact, the limit will change if
we replace tk with stk + (1− s)tk+1 for some s < 1.

Example 16.1. Here is an example to show that the limit can be different if we change
tk to tk+1.∑

k

[g(B(tk+1))− g(B(tk))](B(tk+1)−B(tk)) ≈
∑
k

g′(Btk)(B(tk+1)−B(tk))
2

Suppose g′ ≈ 2. Then this is

≈ 2
∑
k

(B(tk+1)−B(tk))
2

≈ 2
∑
k

tk+1 − tk

= 2s.
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16.2 Examples and applications

Example 16.2. Say you buy stocks every day. Let An be the number of stocks you have
on day n, and let ∆Bn = (Bn+1 − Bn) be the change of stock price on day n. Then we
want to calculate

365∑
n=1

An ·∆Bn

We have that An ∈ Fn, where Fn = σ(B1, . . . , Bn). We also assume that as n → ∞, Bn
looks like a Brownian motion. In the limit, we get∫

At dBt,

where At is Ft-measurable (Ft is our σ-field for Brownian motion).

Example 16.3. Itô’s formula implies

sin(Bt) =

∫
cos(Bs) dBt −

1

2

∫
sin(Bs) ds.

Often, we use Itô’s formula backwards, to find the value of the integral.

Example 16.4. We have

B2
t =

∫ t

0
Bs dBs + t,

so we can solve to get ∫ t

0
Bs dBs = B2

t − t.

In fact, we have the following theorem:

Theorem 16.1. Let g ∈ C2. Then

F (t) =

∫ t

0
g(Bs) dBs

is a martingale.

We will prove this later.
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16.3 Proof of Itô’s formula

Theorem 16.2 (Itô’s formula). Let f ∈ C2([0, 1]). Then

f(Bt) = f(0) +

∫ t

0
f ′(Bs) dBt +

1

2

∫ t

0
f ′′(Bs) ds.

Here is a heuristic argument:

Proof. We have

f(Bt) = f(Bt0) + f ′(Bt0) (Bt −Bt0)︸ ︷︷ ︸
≈(∆t)1/2

+
1

2
f ′′(Bt0) (Bt −Bt0)︸ ︷︷ ︸

≈∆t

+ · · · ,

where ∆t = t − t0. We can get rid of the terms with order > 2, since they will be small
when ∆t is small. Then

f(Bt)− f(B0) =
∑
k

f ′(tk)B(∆k) +
1

2

∑
k

f ′′(Btk)(B(∆k))
2,

B(∆k) := B(tk+1)−B(tk).

When we take the limit, since the B(∆k) are independent of each other, so we get∫
f(Bs) dBs + lim

1

2

∑
k

f ′′(Btk)Ak,

where the Ak are independent N (0,∆k)
2. The law of large numbers makes the right hand

side approximately 1
2

∑
k f
′′(Btk)E[Ak], so the right hand side converges to

∫
f ′′(Bs) ds.

What if we want to prove this for f ∈ C2(R)? We prove it for when ‖f ′‖∞, ‖f ′′‖∞ are
bounded. Then with high probability, ‖Bt‖L∞(0,s) < ∞, so we can extend to the general
case.
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17 Strengthening Itô’s Formula, and Generalizing the Itô
Integral

17.1 Strengthened Itô’s formula

Here is the stronger version of Itô’s formula.

Theorem 17.1 (Itô’s formula). Let f ∈ C2(R) with ‖f ′‖∞, ‖f ′′‖∞ ≤M . Then

f(Bt) = f(0) +

∫ t

0
f ′(Bs) dBt +

1

2

∫ t

0
f ′′(Bs) ds.

We want to show that ∑
{tk}

f ′(Btk)B(∆k)→
∫
f(Bs) dBs

∑
{tk}

f ′′(Btk)B(∆k)
2 →

∫
f(Bs) dBs

where B(∆k) := B(tk+1)−B(tk).
For the first statement, we need to show that

∑
{tk} f

′(Btk)B(∆k) has a limit when the
mesh size of {tk} → 0. What does this convergence mean? This is not just a sequence; it
is a net.

Definition 17.1. A net is a partially ordered collection {Xα}α∈I such that for any α, β,
there exists a γ such that γ > α and γ > β.

For partitions, we have a net: for T = {tk} and T̂ = {t̂− k}, T ≤ T̂ ⇐⇒ {tk} ⊆ {t̂k}.

Proof. We want to show that this net is Cauchy. Write B(∆k) =
∑

ˆ̀B(∆ˆ̀), where the
t̂` ∈ [tk, tk+1]. We have

E

∑
k

f ′(Bk)B(∆k)−
∑
k̂

f ′(Bk̂)B(∆k̂)

2

= E

∑
k

∑
t̂`∈[tk,tk+1]

[f ′(Bk)− f ′(Bˆ̀)]B(∆ˆ̀)

2

B(∆ˆ̀) is independent of random variables measurable with respect to Ft̂` , so a lot of the
terms cancel (because they have zero expectation).

= E

∑
k

∑
t̂`∈[tk,tk+1]

[f ′(Bk)− f ′(Bˆ̀)]
2B(∆ˆ̀)

2
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= E

∑
k

∑
t̂`∈[tk,tk+1]

|f ′(Bk)− f ′(Bˆ̀)|2∆ˆ̀


≤ sup

s,t∈[0,T ]
|s−t|≤max tk+1−tk

E[|f ′(Bs)− f ′(Bt)|]2 · T

This goes to 0 if maxk(tk+1 − tk)→ 0. So this is a Cauchy net, and thus it has a limit.
For the second statement we want to prove, compare∑

k

f ′′(Btk)B2(∆k),
∑
k

f ′′(Btk)∆k.

The right term has the limit
∫
f ′′(Bs) ds. Subtracting these two gives∑
k

f ′′(Btk)[B(∆k)
2 −∆k]

Then f ′′(Btk) is Ftk -measurable, and B(∆k)
2 −∆k is independent of Ftk -measurable ran-

dom variables and has zero expectation.
In general, for these kinds of sums, we have

E

[∑
k

gkhk

]
=
∑
k,k′

E[gkgk′hkhk′ ]

If k′ > k, then gkgk′hk′ ∈ Ftk′ . But hk ⊥ Ft′k .

=
∑
k

E[g2
kh

2
k]

≤M2 E

[∑
k

h2
k

]
≤M2 · T · C ·max

k
(∆k).

So we get that
∑

k f
′′(Btk)[B(∆k)

2 −∆k]→ 0 in L2, which implies convergence in proba-
bility.

17.2 The Itô integral for more general functions

We have defined
∫
f(Bs) dBs when f ∈ C2. What if f depends on the entire path of

Bronian motion until time t? The general case is∫ T

0
f(ω, s) dBs, ω ∈ ΩB.
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Example 17.1. Let f(ω, t) = maxs≤t |Bs(ω)|. Then we are looking at∫ T

0
max
s≤t
|Bs| dBt.

What kind of function should f be?

1. If Brownian motion has the measure space (ΩB,FB,PB), then f should be FB ⊗ T -
measurable.

2. For fixed t, f(ω, t) ∈ Ft.

3. f ∈ L2(ΩB × [0, T ]): that is, E[
∫
f2(ω, t) dt] <∞.

We let H be the collection of f satisfying these 3 properties. We start from

f(ω, t) = a(ω) · 1[t1,t2](t).

What property should a(ω) satisfy to satisfy property (2) above? We want a ∈ Ft1 .
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18 The Itô Integral for L2 Functions

18.1 The Itô integral for simple functions

Recall: If f ∈ L2(ΩB ⊗ [0, T ]), where f(ω, t) is Ft measurable for each t, we want to
understand the integral

IT (f) =

∫ T

0
f(ω, t) dBt.

If f(ω, t) is the number of stocks we have at time t, then the integral gives the profit we
get between 0 and T . We start by analyzing the function

f = a(ω)1[t1,t2](t), 0 ≤ t1 ≤ t2 ≤ T

This is a step function on a fixed interval with a random height. In this case,

IT (f) = a(ω) ·B(t2)−B(t1).

This is intuitive: this function says we buy a stocks at time t1 and sell them at t2; so the
profit is the change in price of stocks from t1 to t2 times the number of shares I have.

The integral is linear, so for simple functions,

f =

n∑
k=1

ak(ω)1[t1k,t
2
k](t) ak ∈ Ft1k =⇒ IT (f) =

n∑
k=1

ak(ω)(B(t2k)−B(t1k)).

18.2 Extending the Itô integral to general L2 functions

If f ∈ L2, we want to find a sequence of simple functions fk
L2

−→ f so we can let IT (f) :=
limk IT (fk).

Lemma 18.1. If f is a simple function,

‖f‖L2(Ω×[0,T ]) = ‖IT (f)‖L2(Ω).

Proof. Suppose f = a(ω)1[s1,s2](t) + b(ω)1[t1,t2] with s1 < t1 < s2 < t2. First,

E
[∫ T

0
f2 dt

]
= E[(t1 − s1)a2 + (s2 − t1)(a+ b)2 + (t2 − s2)b2].

On the other hand,

E[I2
T (f)] = E[[(B(t1)−B(s1))a+ (B(s2)−B(t1))(a+ b) + (B(t2)−B(s2))b]2]

Say the intervals are J1 = [s1, t1], J2 = [t1, s2] and J3 = [s2, t2]. Then if we look at
E[B(J1)aB(J2)(a+b)] for example, B(J2) is independent of the rest. So the crossing terms
cancel.

= E[(B(t1)−B(s1))2a2 + (B(s2)−B(t1))2(a+ b)2 + (B(t2)−B(s2))2b2]

= (t1 − s1)E[a2] + (s2 − t1)E[(a+ b)2] + (t2 − s2)E[b2].
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So we get that IT : L2(Ω × [0, 1]) → L2(Ω) is isometric on simple functions. So if
‖fm − fn‖2 → 0, we get ‖IT (fm)− IT (fn)‖2 → 0. So we can convert Cauchy sequences in
L2(Ω× [0, 1]) to Cauchy sequences in L2(Ω), find the limit, and use it to define IT (f).

Remark 18.1. IT (f) is “only” L2-unique. So if h = IT (f) except in a probability 0 set,
h is also lim IT (fk). This is the same as with the definition of conditional expectation.

18.3 The Itô integral as a random function

If t ≤ T , let

F (ω, t) =

∫ t

0
f(ω, s) dBs

F is a random function. We should believe that F ∈ C([0, 1]) a.s. Here is the issue: for
any t, we know F (ω, t) in a probability 1 set. But we want to have a random variable
for all t at once. We can have P(F̃ (ω, t) = F (ω, t)) = 1 for fixed t, but it is still possible
that P(F̃ 6= F ) = 1 because {F̃ = F} =

⋂
t{F̃ (ω, t) = F (ω, t)}; this is an uncountable

intersection.
So if we want to define the random function F (ω, t), it is not a “simple” extension of

IT (f). To make the construction work out, we need to make sure F is continuous. But this
is hard in general; in general, if I have Xt for each t, it’s not easy to find F (t) ∈ C([0, 1])

with F (t)
d
= Xt for each t. We will need to find a sequence of continuous functions that

converge uniformly to F (ω, t).
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19 The Itô Integral as a Continuous Random Function

19.1 Constructing the integral as an a.s. limit of continuous function

Let H ⊆ L2(Ω× [0, 1]) be the collection of adapted functions; that is, f ∈ H if f(ω, t) ∈ Ft
for all t. Last time we defined the Itô integral so that

IT (f) = lim
n
IT (fn),

where fn are simple functions with fn
L2

−→ f .

We wanted to construct a random function F (ω) ∈ C([0, T ]) such that Ft(ω)
d
= It(f).

Note that in
∫
f(Bs) dBs, we had a Riemann sum:∑

k

f(B(tk))B(∆tk)

We fixed ω first, cut the path Bt into small pieces, and took the limit of the sum. For
f ∈ H we did not define IT (f) in this way. We defined IT (f) first, based on fn → f . So
for each ω, we do not know what the path Ft looks like.

Theorem 19.1. With probability 1, t 7→ Ft is continuous.

Proof. Suppose

fn =
∑
k

a
(n)
k 1

[t
(n)
k ,t

(n)
k+1]

(t).

Then define

Fn(t) =
∑
k≤k0

a
(n)
k (ω)[B(t

(n)
k+1)−B(t

(n)
k )] + a

(n)
k0+1(ω)B(t), k0 = max{k : tk+1 ≤ t}.

This Fn(t) is continuous a.s. We want to take the limit to get F (t); that is, we want a
limit point of (Fn(t)) in C([0, 1]). So we want to find a Cauchy sequence in C([0, T ]). We
we want to look at

max
t
|Fn(t)− Fm(t)|

We defined Fn by f(m), so if we denote Fn = F (fn), we see that Fn−Fm = F (fn−fm).
So we want to find

Xm,n := max
t
|F (fn − fm)(t)|

This difference, which we can call Fn,m(t), is is a martingale with respect to t. Doob’s
inequality says

E[X2
m,n] ≤ C E[Fn,m(T )2]
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So Chebyshev’s inequality gives

P(Xm,n ≥ ε) ≤
C

ε2
E[Fn,m(T )2]

=
C

ε2
‖IT (fn)− IT (fm)‖2L2

=
C

ε2
‖fn − fm‖22.

Pick a subsequence such that ‖fkn − fkm‖22 ≤ 2−3n for km ≥ kn. Then we get

P(Xn,m ≥ 2−n) ≤ 2−n.

By the Borel-Cantelli lemma, with probability 1, there is an n0(ω) such that when n ≥ n0,

‖Fkn − Fkn+1‖∞ ≤ 2−n.

So Fkn is Cauchy a.s. So fkn has a limit in C([0, T ]).

19.2 Further considerations about this construction

1. For fixed t, does F (t)
d
= It(f)? Yes, because Fkn(t)

d
= It(fkn) for each n.

2. F (t) is also a martingale with respect to t: F (s) = E[F )t|Fs], so then Fkn(s) =
E[Fkn(t) | F (s)]. F is a mar

Based on how we defined this version of F (t), it is unclear how much the path F (ω, t)
depends on B(ω) for fixed ω. If we picked ω0 so B(ω0) is the 0 function, can we even say
that F (ω0) is the 0 function?
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20 When is the Itô Integral Zero?

20.1 The Itô integral with respect to a stopping time

Let ω0 be such that B(ω0, t) = 0 for all t. Then do we get (
∫ t

0 f dBs)(ω) for all t? The

issue is that
∫ T

0 f dBs is only L2-unique.
When discussing the Itô integral, we constructed it as a limit of IT (fn), where fn → f

are simple functions:

fn =
∑

a
(n)
k (ω)1

[t
(n)
k ,t

(n)
k+1]

(t),

∫ t

0
fn dBs =

∑
a

(n)
k B(∆

(n)
k ).

Then if (
∫ t

0 fn dBs)(ω0) = 0 for all t, then (
∫ t

0 f dBs)(ω0) = 0.

Theorem 20.1. Let f(ω, t) be Ω× [0, T ] measurable and adapted to Ft. Let

X(ω, t) =

∫ t

0
f(ω, s) dBs,

and let ν be a stopping time such that f(ω, t) = 0 if t < ν(ω). Then X(ω, t) = 0 if t < ν(ω).

Example 20.1. Let

f(ω, t) =

{
1 |B(ω, t)| ≥ 2

0 otherwise,
ν(ω) = inf{t : |B(ω, t)| ≥ 1}

Then X(ω, t) = 0 if t < ν(ω).

We want to say something like∫ t

0
f dBs =

∫ t∧ν

0
f dBs =

∫ t∧ν

0
0 dBs = 0,

But we do not have any definition for integrating with bounds determined by a random
variable.

Lemma 20.1. Let f, g ∈ L2 be adapted, and let ν be a stopping time. If f = g for t ≤ ν,
then X(t) = Y (t) for t ≤ ν. Here, X(t) =

∫ t
0 f dBs, Y (t) =

∫ t
0 g dBs.

Proof. We know fn → f , where fn =
∑
a

(n)
k (ω)1

[t
(n)
k ,t

(n)
k+1]

(t) are simple functions. We can

choose these to be t
(n)
k = k/2n. Define

f̃n =
∑

a
(n)
k (ω)1

[t
(n)
k ,t

(n)
k+1]

(t)1{ν≤t(n)k }
.
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Then f̃n(ω, t) = 0 if t ≤ ν. These are still simple functions, so we can compute the integrals
of them; we have (∫ t

0
f̃n dBs

)
(ω, t) = 0 if t < ν.

We need to show f̃n → f in L2(Ω× [0, T ]). Check this.
If we have (

∫
f̃n dBs)(ω, t) = 0 if t < ν, then for fixed t, (

∫ t
0 f dBs)(ω, t) = 0 in the

event t < ν (with probability 1). But this is not enough to say that
∫ t

0 f dBs = 0 for all t
a.s. But it holds at all rational t with probability 1. Since It(f) is continuous in t, we get
that this is 0 for all t with probability 1.

20.2 Extending the integral to L2
loc

Recall H2 = {f ∈ L2(Ω× [0, T ]) : f is adapted}. Even some basic functions do not make it
into this collection: eB(s)4 /∈ L2. We must find some way to extend the integral to a more
general class of functions. Define L2

loc = {f : P(
∫ T

0 |f(ω, t)|2 dt < ∞) = 1, f is adapted}.
This class contains H2: if E[X] < ∞, then X < ∞ a.s. This class even encompasses

functions such as ee
eB(s)

.
Why stop at 2? We can define Lploc similarly; then Lploc ⊆ L

q
loc if p > q.

Example 20.2. Let f(s) = (1−s)−1/2; this is not random. Then what is
∫ 1

0 f dBs? Define

Zn =

∫ 1−2−n−1

1−2−n
f dB.

Then E[Zn] = Zn, and Var(Zn) = ‖f‖L2(1−2−n,1−2n−1) = log(2). The Zn are independent,
but they all have the same variance. So if we break the integral down into more and more
pieces, there is no way we can make sense of this.
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21 Itô Integration of L2
loc Functions and Local Martingales

21.1 Why only L2
loc?

Why should we not try to integrate functions in Lploc for p 6= 2?

Proposition 21.1. Let f(t) :=
∫ t

0 (1− s)−1/2 dBs. Then lims→1 f(s) does not exist.

Proof. The idea is that f(t2)− f(t1) ⊥ f(t1)− f(t3) if (t1, t2) ∩ (t3, t4) = ∅. If we look at
‖f(t)‖L2 for fixed t, this goes to ∞ as t→ 1.

‖f(t)‖L2 =

∫ t

0
(1− s)−1 ds

t→1−−→∞.

Then let tk be such that ‖f(tk)− f(tk−1)‖L2 ≥ 2‖f(tk−1)‖L2 .

21.2 Defining the Itô integral for L2
loc functions

If f ∈ L2
loc, we want to define the Itô integral

Ft =

∫ t

0
f dBs.

We know that

P
(∫ T

0
f2(t, ω) dt <∞

)
= 1.

The idea is to define f (n)(t) = f(t ∧ τn), where τn := inf{r :
∫ r

0 f
2 ds ≥ n}. Then

E
[∫ T

0
(f (n))2 dt

]
<∞.

Now, we can let

F
(n)
t =

∫ t

0
f (n) dBs, Ft = lim

n→∞
F

(n)
t .

We get that f(t)(n+1) = f(t)(n) for t ≤ τn. From our considerations last time, this gives
F (n+1)(t) = F (n)(T ) for t ≤ τn. And since f ∈ L2

loc, T ∧ τn → T .
Moreover, Ft is a continuous function (which we get from the sequential consistency

F (n+1)(t) = F (n)(T ) for t ≤ τn). In general we have the following, for any stopping times
τn.

Proposition 21.2. Let f ∈ L2
loc, and let τ = (τn)n be stopping times with τn < τm for

m > n and T ∧ τn → T . Then fn(t) := ft∧τn are H2 functions. With these stopping times,

F
(τ)
t := lim

n
F

(n)
t ,

where the convergence is uniform convergence on compact sets.
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We want to show that this definition is independent of τ .

Proposition 21.3. If τ and µ are families of stopping times satisfying these properties,
then F (τ) = F (ν). a.s.

Proof. Define Wn = min{τn, νn}. Then F
(n),τ
t = F

(n),ν
t for all t ≤ Wn.

21.3 Local martingales

If f ∈ H, then
∫
f dBs is a martingale. How about for f ∈ L2

loc? It is not, but it is a local
martingale.

Definition 21.1. Let Xt be a continuous random process with stopping times τn ↗ +∞
and let X

(n)
t = Xt∧τn . (Xt, τ) is a local martingale if X

(n)
t is a martingale for each n.

Here is a natural example of a local martingale which is not a martingale.

Example 21.1. A simple random walk is a martingale, and we can linearly interpolate to
get a continuous random process Xt. Look at τ := inf{n : Sn = −1}. Then τ < ∞ a.s.,
but

E[ lim
t→∞

Xt∧τ ] = −1 6= lim
t→∞

E[Xt∧τ ].

If f(t) is increasing and continuous and Xt is a martingale, then Zt := X(f(t)) is still
a martingale. We are going to use this change the scale of the times. Let Yt = Bt∧τ , where
τ = inf{t : Bt ≤ −1}. Now define

Xt = Y t
1−t
, 0 < t < 1.

Then Xt is a martingale on [0, 1). Now extend

X+
t :=

{
Xt 0 ≤ t < 1

−1 t ≥ 1.

We claim that X+
t is a local martingale. Define τn = min(inf{t : Xt ≥ n}, n). Then

τn ↗∞. Then X+
t∧τn is a bounded martingale.
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22 Local Martingales for Stochastic Integrals

22.1 Stochastic integrals as local martingales

Example 22.1. Let Xt = Bt∧τ , where τ = inf{t : Bt ≤ −1}. Then define

Yt =

{
X t

1−t
t ≤ 1

−1 t ≥ 1.

Then Yt is a local martingale with

τn =

{
inf{t : Yt ≥ n} if inf <∞
n otherwise.

We need to check that Y
(n)
t := Yt∧τn is a martingale. First, Y

(n)
t ∈ R, for each t, so

this is well-defined. Then Y
(n)
t = Bt̃∧τ̃n = B t

1−t∧τ̃n
, where τ̃n = τn

1−τn and τ̃n = inf{t̃ : Bt̃ =

n or − 1}.

If f ∈ L2
loc([0, T ]), why is

∫ t
0 f dBs a local martingale? We know that

∫ T
0 f2 dt < ∞

a.s., and Ft = FT if t > T . Let

τn =

{
inf{t :

∫ t
0 f

2 ≥ n} if inf <∞
nT otherwise.

22.2 Recovering martingales from local martingales

What properties do local martingales have?

Example 22.2. Let Xt be a local martingale with X0 = 0, and let τ = inf{t : Xt =
−a or b}. We want to calculate P(Xτ = a). When this is a martingale, we use the fact
that E[Xτ ] = 0.

Define X
(n)
t := Xt∧τn , which is a martingale. Then X

(n)
t∧τ is a (bounded) martingale.

Then E[X
(n)
τ ] = 0. This gives us E[Xτ∧τn ] = 0. But Xτ = limn→∞Xτ∧τn as n→∞. Since

this is pointwise bounded convergence, we get L1 convergence: E[Xτ∧τn ] = E[Xt].

Theorem 22.1. Let Xt be a local martingale with a sequence of stopping times τn, and let
τ be a stopping time. Then Yt := Xt∧τ is a local martingale. Furthermore, if Xt is bounded
(supω,t |Xt| ≤M), then Xt is a martingale.

Proof. The martingale property is E[Xt | Fs] = Xs. For local martingales, we have
E[Xt∧τn | Fs] = Xs∧τn . Letting n → ∞ so τn → ∞, the right hand side becomes Xs∧τn .
However, this does not necessarily mean that the left hand side goes to E[Xt | Fs]; we can
have fn → f but

∫
fn 6→

∫
f . But Fatou’s lemma tells us that if Xt ≥ 0,

E[Xt | Fs] ≤ lim inf
n

E[Xt∧τ | Fs] ≤ lim
n
Xs∧τn ≤ Xs.

So if Xt ≥ 0, then Xt is a supermartingale. So if |Xt| ≤M , then Xt is a martingale.
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22.3 Local martingale form of Itô’s formula

We have learned one form of Itô’s formula:

f(Bt)− f(0) =

∫ t

0
f ′(Bs) dBs +

1

2

∫ t

0
f ′′(Bs) ds

for f ∈ C2.
People like to use the formula in another way:∫ t

0
f(Bs) dBs =

∫ Bt

0
f(s) ds− 1

2

∫ t

0
f ′(Bs) ds

for f ∈ C1. Here, the right hand side depends on ω, so the left hand side should, as well.
So the left hand side is determined “ω by ω” or “pathwise.”

Let’s extend this notion to f(t, Bt) for f ∈ C1 × C2. We have

f(t, Bt) = f(0, B0) +

∫ t

0
f (1,0)(s,Bs) ds+

∫ t

0
f (0,1)(s,Bs) dBs +

1

2

∫ t

0
f (0,2)(s,Bs) dBs,

where the superscripts denote partial derivatives. Here, if f (1,0) = f (0,2), then f(t, Bt)
equals a constant plus the 3rd term, which is a local martingale. This will give us that f
is a local martingale.
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23 Constructing Martingales and Itô Integration in Rd

23.1 Constructing martingales using Itô integration

If we have f(t, Bt), then Itô’s formula gives us

df(t, Bt) = ft dt+ fxdBs +
1

2
fxx dt

If ft = −1
2fxx, we get that

f(t, Bt) =

∫
fx dBs.

This implies that f(t, Bt) is a local martingale. If this is bounded, it must be a martingale.

Example 23.1. Suppose we have the line µt + a. What is P(∃t s.t. Bt = µt + a)? Let’s
try looking at Xt = Bt − µt. Then we want P(∃t s.t. Xt = a).

In general, let’s look atXt = µt+σBt, where µ, σ ∈ R. If we let τ = inf{t : Xt = a or b},
then the probability we want is the limit limb→∞ P(Xτ = a). If µ = 0, then Xt is a
martingale. Then Yt := Xt−b

a−b is also a martingale, and

Yτ =

{
1 Xτ = a

0 Xτ = b.

Then

P(Yτ = 1) = E[Yτ ] = E[Y0] = − b

a− b
.

The middle step comes from the fact that Yt∧τ is bounded.

Example 23.2. Let’s find some function with the form f(t, x) = f̃(µt + σz) and ft +
1
2fxx = 0; such a function will make f̃(Xt) a local martingale. The derivative condition is

µf̃ ′ + 1
2σ

2f̃ ′′ = 0. Notice that if µ = 0, then f̃(s) = cs + d for some c, d; so cXt + d is a
martingale.

Let’s try the function

f̃A,B(s) =
e−2µs/σ2 − e−2µB/σ2

e−2µA/σ − e−2µB/σ2 .

Then f̃ satisfies this differential equation, f̃ = 1 if s = A, and f̃ = 0 if s = B. So

E[f̃A,B(Xt)] = P(Xτ = A) = E[f̃A,B(X0)].
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23.2 Brownian motion and Itô integration in Rd

We can construct Brownian motion in Rd by constructing a length d vector of independent
Brownian motions B(t) = (B1(t), B2(t), . . . , Bd(t)). Here is what Itô’s formula looks like
in Rd:

Theorem 23.1. For suitable f(t, B(t)).

df(t, B(t)) = ft dt+

d∑
k=1

fxk dBk +
1

2

d∑
k=1

fxkxk dt

= ft dt+∇f · dB +
1

2
∆f dt.

Equivalently,

f(t, B(t)) =

∫ t

0
ft(s,B(s)) ds+

d∑
k=1

fxk(s,B(s)) dBk(s) +
1

2

∫ t

0
fxkxk(s,B(s)) dt.

Corollary 23.1. If f(t, x) satisfies ft + 1
2∆f = 0, then f(t, Bt) is a local martingale.

Look at 2-dimensional brownian motion. Then for a ∈ R2,

P(∃t s.t. Bt = a) = 0.

We can also find the following.

Proposition 23.1.
P(∃{tk} s.t. lim

k
Btk = a) = 1.

This is a nontrivial question to ask. However, this is a well-known result nowadays.
Interestingly, this probability is not equal to 1 when d > 2.

Proof. We want to find Pa(∃t s.t. |Bt| ≤ r); if this probability is 1 for r > 0, then the result
holds by taking a sequence of r going to 0. Let τ := inf{t : |Bt| = r or rL}, where rL > R.
Then we want P(|Bτ | = r). Let’s find some f(t, Bt) such that ft + 1

2fxx = 0. We also need
a kind of property like f(t, x) = 1 if |Bt| = r and f(t, Bt) = 0 if |Bt| = rL. We can do this
by requiring f(t, x) = h(‖x‖), i.e. it only depends on h. This gives ∆f = 0. So we want a
function like h(x) log |x|. The actual choice is

f(x) =
log |x| − log(rL)

log(r)− log(rL)
.

This gives

P(|Bτ | = r) = E[f(B(t))] = E[f(B(0))] =
log(R)− log(rL)

log(r)− log(rL)

rL→∞−−−−→ 1.

This completes the proof.
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Remark 23.1. If d = 3, we get that f(x) is like 1/|x|. In particular,

f(x) =
1/|x| − 1/|rL|
1/|r| − 1/|rL|

.

The same calculation gives

P(|Bτ | = r) =
1/R− 1/rL
1/r − 1/rL

rL→∞−−−−→ r

R
.
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24 Integrating With Respect to Random Processes

24.1 Integrating with respect to random processes

The 1-dimensional version of Itô’s formula says that

df(t, Bt) = ft dt+ fx dBt +
1

2
fxx dt.

For a Brownian motion Bt = (B1, . . . , Bd) in Rd, we have

df(t, Bt) = ft dt+∇f · dB +
1

2
∆f dt.

Let’s cover something more general.
Suppose we have a process

Xt = X0 +

∫ t

0
a(ω, s) ds+

∫ t

0
b(ω, s) dBs.

Here, a(t), b(t) ∈ Ft for any t, where Ft is the filtration with respect to Brownian motion.
We can write this as dXt = a(t) dt+ b(t) dBt. How can we define

∫ t
0 f(s) dXs? And in Rd,

what if we have dXt = a(t) dt+ b̂(t) dB(t), where Xt, a are vectors and b̂ is a matrix?
To figure out the value of

∫ t
0 f(s) dXs, we can write

df(t,Xt) = ft dt+ fx dXt +
1

2
fxxb

2(t) dt,

where
fx dXt = (fxa(t)) dt+ b(t) dBt.

If we replace Xt with Bt, we get a(t) = 0 and b(t) = 1; but this does not really help us
understand this generalization.

Here is why the formula looks like this: we have ft∆t + fx∆Xt + 1
2fxx(∆t)2. How

do we understand the last term? Look at E
[

(∆Xt)2

∆t

]
. As ∆t → 0, we have ∆Xt →

a(t)∆t+ b(t)∆Bt. So
(∆Xt)

2

∆t
→ b2(t) · (∆Bt)

2

∆t
.

So the last term in our formula is actually like 1
2fxx(dXt)

2.

Example 24.1. Let Xt =
∫

cos(t) dBt. What is sin(Xt)? This is a question from an
interview book.

Returning to the vector version dXt = a(t) dt+ b̂(t)dBt, we have

df(t,Xt) = ft dt+∇ · dxt +
1

2
dXt ·Hess(f) dXt.
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24.2 Quadratic variation

If we know Xt, can we find b̂(t)? The idea is that Xt is what you actually observe, and
we are modeling it as Brownian motion. Then we want to recover some information about
the model. If Xt is our process, then we want to find the quadratic variation 〈X〉t:

lim
∆t↓0

∑
k

(Xtk −Xtk−1
)2.

We find that

〈X〉t =

∫ t

0
b2(s) ds.

Then
d〈X〉t
dt

= b2(t).

In applications, we can assume that b is a.s. non-random. This gives us a lot of information
about how the sample paths of our process vary. This is used in financial mathematics to
“observe” the variation of stock prices.

24.3 Dyson spheres

We will discuss Dyson Brownian motion next time. Dyson is famous in science fiction
circles for a different idea. He thought that in any developed culture, there will be a race
towards more efficient forms of energy production. Solar energy if one of the most efficient
and long-lasting forms of energy, so he thought that people would build solar panels close
to their sun, where they can get the most energy. So eventually, the sun would be covered
by solar panels, in what is called a Dyson sphere. Dyson proposed that to look for alien
life, we should look for stars where the brightness has been reduced (to indicate that it has
been covered by solar panels.
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25 Dyson Brownian Motion

25.1 The drifting term in the rate of change of the eigenvalues

Let’s say we have Hermitian matrices Ht = H0 +Ht
G, where Ht = (Ht)† and H0 = (H0)†.

Let λrk be the k-th largest eigenvalue of Ht and utk be such that ‖U tk‖2 = 1 and Htutk = λtku
t
k

(eigenvector).
We let [Ht

G]i,j ∼ B(t) for i < j and [Ht
G]i,i ∼ B(2t). The entries of Ht are independent.

with Ht
G = (Ht

G)†. Then Ht
i,j = H0

i,j + Bi,j(t) is a process for each i ≤ j. So we can
consider eigenvalues as a function of these processes: λtk({Hi,j}i≤j). What if we change
the eigenvalues a little bit?

dλtk =
∑
i,j

∂λk
∂Ht

i,j

dBt
i,j +

1

2

∑
i,j,i′,j′

∂2λk
∂Hi,j∂Hi′,j′

dBi,j dBi′,j′

= ∇λk · dHt + dHt ·Hess(λk) dH
t.

Since these N ×N matrices are Hermitian, we have N2 processes which are not all inde-
pendent.

Since dBi,jdBi′,j′ = dt if {i, j} = {i′, j′} and 0 otherwise, we get

dλtk =
∑
i,j

∂λk
∂Ht

i,j

dBt
i,j +

1

2

∑
i,j

[
∂λk
∂H2

i,j

+
∂2λk

∂Hi,j∂Hj,i

]
dt

There are results that say

∂λk
∂Hi,j

= uk(i)uk(j),
∂uk
∂Hi,j

=
∑
`6=k

uk(i)u`(j)

λ` − λk
u`.

So the right term, the “drifting term”, is∑
`

−1

λ` − λk
dt.

So if λk is very close to λk+1, we get a very large negative term. So there is some large
force to pull λk down, away from λk+1. This gives us a surprising property: the order of
the eigenvalues never changes! That is, if we plot all the eigenvalues with t, the curves
never intersect.

25.2 The diffusion term

Let’s do some calculations with the first term, the “diffusion term”. This is∑
i,j

uk(i)uk(j) dBi,j(t)
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Now define

Bk(t) =

∫ ∑
i,j

utk(i)uk(j) dBi,j(t).

This is a process, and we can check that for any fixed t, Bk(t) ∼ N (0, t): We can calculate

E[B2
k(t)] =

∑
i,j

utk(i)u
t
k(j)u

t
k(i)u

t
k(j) · t = t.

We can also calculate for ` 6= k,

E[Bk(t)B`(t)] =
∑
i,j

itk(i)u
t
k(j)u`(i)u`(j) = 0

because the uk, u` are orthogonal to each other. In fact, we can prove that

E[Bm
k (t)] = E[N (0, t)m].

Moreover, Bk(·) is a Brownian motion, and {Bk}Nk=1 are independent.
So we have that

dλk = dBk +
∑
`

−1

λ` − λk
.

What if I define some other process

dλ̃k = dB̃k +
∑
`

−1

λ̃` − λ̃k

with the same distribution? This doesn’t come from a matrix, but we can still use it to
study the distribution of λk.
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26 Stochastic Differential Equations

26.1 Examples of SDEs

If we have a process satisfying a stochastic differential equation, we may want to recover
a concrete description of it. We want to solve stochastic differential equations of the
form

dXt = f(t,Xt) dt+ g(t,Xt) dBt.

Example 26.1. Consider the equation

dXt = µXt dt+ σXt dBt,

where µ, δ are fixed.
To solve this, we hope that Xt = f(t, Bt). If this is correct, we get that

ft =
1

2
fxx = µf, fx = σf.

We can then solve this equation to get a solution of the form

f = eσx+g(t).

Plugging this back into the equation, we get

f = eσx+(µ−σ/2)t.

So the solution to the SDE is

Xt = eσBt+(µ−σ/2)t ·X0.

These do not always have this kind of solution. Here is an example:

Example 26.2. Consider the Ornstein-Uhlenbeck process satisfying the equation

dXt = −aXt dt+ σ dBt.

If we try to solve it the same way, we get

ft +
1

2
fxx = −af, fx = σ.

Then we get
f = σx+ g(t), g′ = −a(σx+ g(t)).

So there are no solutions of this type to this differential equation.
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To solve this, recall the trick to solving the ODE f ′ = −af + g(x). We introduce a
factor like e

∫
a. The idea is to introduce a factor

Y = g(t) ·X(t).

Then we get

dY = g′X(t) dt+ g(t) · dXt

= g′Xt dt+ g(t)(−aXt) dt+ g(t)σ dt.

We want something of the form g′ = ag, so g = ceat. With this g, we get

dY = σ dBt =⇒ Y = Y0 + σBt

We then get
X = ce−at(Y0 + σBt).

Remark 26.1. This process has E[X2
t ] <∞, so it has a limit.

Example 26.3. Let’s say we have a Brownian bridge, a Brownian motion with B1 = 0.
This event has probability 0, so we can’t condition on B1 = 0. We can set up the equation

Xt = − Xt

1− t
dt+ dBt.

We can solve this as before with a(t) = − 1
1−t . We have g′ = a(t)g, so e

∫ t
0 a(s) ds · C. And

for Y = g ·X, we get

Y = g dBt =
1

1− t
dBt.

So

X = (1− t)
∫ t

0

1

1− s
dBs.

gives us the formula for a Brownian bridge.

26.2 Existence and uniqueness of solutions to SDEs

Theorem 26.1. Consider the equation

dXt = µ(t,Xt) dt+ σ(t,Xt) dBt.

Suppose µ, σ are smooth, Lipschitz:

|µ(t, x)− µ(t, y)| ≤ K|x− y|, |σ(t, x)− σ(t, y)| ≤ L|x− y|,

and µσ ≤ (1 + |x|)C. Then there is a unique solution to this equation.
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Proof. To prove uniqueness, suppose

Xt =

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dBs +X0,

Yt =

∫ t

0
µ(s, Ys) ds+

∫ t

0
σ(s, Ys) dBs + Y0.

By the Lipschitz condition, we get that Xt − Yt is bounded by the integral of something
like Xs − Ys. That is, the L∞ norm is bounded by the L1 norm. Such a function must be
0. In fact, we actually bound E[(Xt − Yt)2] like this.

For existence, take a sequence of iterates

X
(n+1)
t =

∫ t

0
µ(s,X(n)

s ) ds+

∫ t

0
σ(s,X(n)

s ) dBs + C0,

and show that this converges. We do this by using the contraction mapping theorem: we
show that

‖X(n+1) −X(n) ≤ C‖X(n) −X(n−1)‖

for some C < 1. To get C < 1, we make the time interval small enough.
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27 The Martingale Central Limit Theorem

27.1 Motivation

The central limit theorem says something like

Sn√
n

d−→ N (0, 1).

We have also learned about Donsker’s theorem, which extends this idea to Brownian mo-
tion.

Sn is not necessarily small. If Xi are iid, then E[Sn] = nE[Xi]. The central limit
theorem tells us that the fluctuation of Sn is much less than nE[X]. We know that
E[Sn] ∼ n and Var(Sn) ∼ n. This is because

E

( n∑
i=1

Xi − E[Xi]

)2
 =

∑
i,j

E[(Xi − E[Xi])(Xj − E[Xj ]])],

where these terms are 0 if i 6= j by independence. So the property comes from the incre-
ments Xk = Sk+1 − Sk.

But the situation is more complicated for martingales. Let S1, S2, . . . be a martingale.
Then if

1

n

n∑
k=1

E[(Sk+1 − Sk)2 | Fk]→ c,

then
Sn√
n
∼ N (0, 1).

In the iid case, c = 1. If we define Xk = Sk+1−Sk, then Xk and X` are not independent.
So this result is nontrivial (and maybe even unintuitive). The idea is that under certain
conditions, the Xk are independent.

27.2 The Markov chain CLT and martingale CLT

Theorem 27.1 (Martingale CLT). Let {Sk}k be a martingale, an dlet Xk = Sk+1 − Sk.
Suppose that ∑dn·te

k=1 E[X2
k | Fk]

tn
→ 1 ∀t.

Then
S(n·)√
n
→ B(·).
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Compare this to the Markov chain central limit theorem. Let X1, X2, . . . be a Markov

chain with a stationary distribution π. If we start the chain at π, then X1, X2, . . .
d
=

X2, X3, . . . ; i.e. the sequence is stationary. The ergodic theorem says that 1
n

∑n
k=1 f(Xk)→

Eπ[f(X1)]; i.e. the sequence is ergodic.

Theorem 27.2 (Markov chain CLT). Let {Xn}n be an ergodic, stationary sequence with
E[Xn | Fn−1] = 0 and E[X2

i ] = 1. Then

Sn√
n

d−→ N (0, 1).

The central limit theorem for Markov chains is a special case of the theorem for mar-
tingales. Let’s prove this assuming the martingale CLT.

Proof. We want to show that

1

n

∑
k

E[X2
k | Fk−1]→ 1.

Define uk := E[X2
k | Fk−1]; this is also an ergodic, stationary sequence. So the property in

the martingale CLT is satisfied.

Now let’s prove the martingale CLT.

Proof. If {Sn}n is a martingale with S0 = 0 (and E[S2
n] < ∞), then we can define stop-

ping times T1, . . . , Tn such that (S1, . . . , Sn)
d
= (BT1 , . . . , BTn). This is a repeated use of

Skorokhod’s representation theorem. We then find that

E[X2
k | Fk−1] = E[Tk − Tk−1 | FBTk−1

].

If Tn ≈ n, we are done. We have Tn =
∑

k Tk − Tk−1 and
∑

k E[Tk − Tk−1 | FTk−1
] = n. If

we can show that both are close, we will be done.
Let τk = Tk − Tk−1, and let Vk = E[Tk − Tk−1 | FTk−1

]. We want to show that
E[(
∑

k τk − Vk)2] = O(n). If k < `,

E[(τk − E[τk | FTk−1
)(τ` − E[τ` | FT`−1

])] = E[τkτ`]− E[τ` E[τk | FTk−1
]]− E[τl E[τ` | FT`−1

]

+ E[E[τ` | FT`−1
]E[τk | FTk−1

]]

The third term becomes −E[τkτ`]. We can calculate the other terms similarly.

= 0.
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